Reproducibility of Functional Connectivity and Graph Measures Based on the Phase Lag Index (PLI) and Weighted Phase Lag Index (wPLI) Derived from High Resolution EEG

Abstract
Functional connectivity (FC) and graph measures provide powerful means to analyze complex networks. The current study determines the inter-subject-variability using the coefficient of variation (CoV) and long-term test-retest-reliability (TRT) using the intra-class correlation coefficient (ICC) in 44 healthy subjects with 35 having a follow-up at years 1 and 2. FC was estimated from 256-channel-EEG by the phase-lag-index (PLI) and weighted PLI (wPLI) during an eyes-closed resting state condition. PLI quantifies the asymmetry of the distribution of instantaneous phase differences of two time-series and signifies, whether a consistent non-zero phase lag exists. WPLI extends the PLI by additionally accounting for the magnitude of the phase difference. Signal-space global and regional PLI/wPLI and weighted first-order graph measures, i.e. normalized clustering coefficient (gamma), normalized average path length (lambda), and the small-world-index (SWI) were calculated for theta-, alpha1-, alpha2- and beta-frequency bands. Inter-subject variability of global PLI was low to moderate over frequency bands (0.12<CoV<0.28), higher for wPLI (0.25<CoV<0.55) and very low for gamma, lambda and SWI (CoV<0.048). TRT was good to excellent for global PLI/wPLI (0.68<ICC<0.80), regional PLI/wPLI (0.58<ICC<0.77), and fair to good for graph measures (0.32<ICC<0.73) except wPLI-based lambda in alpha1 (ICC = 0.12). Inter-electrode distance correlated very weakly with inter-electrode PLI (−0.06<rho<0) and weakly with inter-electrode wPLI (−0.22<rho<−0.18). Global PLI/wPLI and topographic connectivity patterns differed between frequency bands, and all individual networks showed a small-world-configuration. PLI/wPLI based network characterization derived from high-resolution EEG has apparently good reliability, which is one important requirement for longitudinal studies exploring the effects of chronic brain diseases over several years.