Abstract
Whole-genome transporter analyses have been conducted on 141 organisms whose complete genome sequences are available. For each organism, the complete set of membrane transport systems was identified with predicted functions, and classified into protein families based on the transporter classification system. Organisms with larger genome sizes generally possessed a relatively greater number of transport systems. In prokaryotes and unicellular eukaryotes, the significant factor in the increase in transporter content with genome size was a greater diversity of transporter types. In contrast, in multicellular eukaryotes, greater number of paralogs in specific transporter families was the more important factor in the increase in transporter content with genome size. Both eukaryotic and prokaryotic intracellular pathogens and endosymbionts exhibited markedly limited transport capabilities. Hierarchical clustering of phylogenetic profiles of transporter families, derived from the presence or absence of a certain transporter family, showed that clustering patterns of organisms were correlated to both their evolutionary history and their overall physiology and lifestyles. Membrane transporters are the cell's equivalent of delivery vehicles, garbage disposals, and communication systems—proteins that negotiate through cell membranes to deliver essential nutrients, eject waste products, and help the cell sense environmental conditions around it. Membrane transport systems play crucial roles in fundamental cellular processes of all organisms. The suite of transporters in any one organism also sheds light on its lifestyle and physiology. Up to now, analysis of membrane transporters has been limited mainly to the examination of transporter genes of individual organisms. But advances in genome sequencing have now made it possible for scientists to compare transport and other essential cellular processes across a range of organisms in all three domains of life. Ren and Paulsen present the first comprehensive bioinformatic analysis of the predicted membrane transporter content of 141 different prokaryotic and eukaryotic organisms. The scientists developed a new computational application of the phylogenetic profiling approach to cluster together organisms that appear to have similar suites of transporters. For example, a group of obligate intracellular pathogens and endosymbionts possess only limited transporter systems in spite of the massive metabolite fluxes one would expect between the symbionts and their host. This is likely due to the relatively static nature of their intracellular environment. In contrast, a cluster of plant/soil-associated microbes encode a robust array of transporters, reflecting the organisms' versatility as well as their exposure to a wide range of different substrates in their natural environment.