Abstract
Modern optical techniques allow one to accurately control light using atoms and to manipulate atoms using light. In this Colloquium the author reviews several ideas indicating how such techniques can be used for accurate manipulation of quantum states of atomic ensembles and photons. First a technique is discussed that allows one to transfer quantum states between light fields and metastable states of matter. The technique is based on trapping quantum states of photons in coherently driven atomic media, in which the group velocity is adiabatically reduced to zero. Next, possible mechanisms are outlined for manipulating quantum states of atomic ensembles. Specifically, a “dipole blockade” technique is considered in which optical excitation of mesoscopic samples into Rydberg states can be used to control the state of ensembles at the level of individual quanta. It is also noted that even simple processes involving atom-photon correlations can be used to effectively manipulate the ensemble states. Potentially these techniques can be used for implementation of important concepts from quantum information science.