Abstract
The purpose of this study was to examine the relationship between the DNA intercalating characteristics and the DNA damaging capacity of four alkaloids extracted from Chelidonium majus L, as well as their toxicity towards murine NK/Ly lymphoma cells. Chelerythrine, sanguinarine and coptisine were found to be intercalated into the DNA isolated from NK/Ly cells, meanwhile, chelidonine exhibited no affinity to DNA. Sanguinarine exhibited the greatest toxicity toward NK/Ly cells, and the toxicity of the other three decreased in descending order: chelerythrine, coptisine and chelidonine. Chelerythrine and sanguinarine caused DNA damage, illustrated by the formation of comets of the third class. Coptisine was less toxic than chelerythrine and sanguinarine, and affected the formation the same class of comets in higher concentration. The quantity of comets induced by chelidonine were negligible, a finding consistent with its inability to intercalate into DNA structure. The ability of four main alkaloids of Chelidonium majus L., to intercalate into DNA isolated from murine NK/Ly lymphoma cells, correlated with their ability to induce breaks in cellular DNA and with their toxic effect towards those cells.