Preoperative Magnetic Resonance and Intraoperative Ultrasound Fusion Imaging for Real-Time Neuronavigation in Brain Tumor Surgery

Abstract
Purpose: Brain shift and tissue deformation during surgery for intracranial lesions are the main actual limitations of neuro-navigation (NN), which currently relies mainly on preoperative imaging. Ultrasound (US), being a real-time imaging modality, is becoming progressively more widespread during neurosurgical procedures, but most neurosurgeons, trained on axial computed tomography (CT) and magnetic resonance imaging (MRI) slices, lack specific US training and have difficulties recognizing anatomic structures with the same confidence as in preoperative imaging. Therefore real-time intraoperative fusion imaging (FI) between preoperative imaging and intraoperative ultrasound (ioUS) for virtual navigation (VN) is highly desirable. We describe our procedure for real-time navigation during surgery for different cerebral lesions. Materials and Methods: We performed fusion imaging with virtual navigation for patients undergoing surgery for brain lesion removal using an ultrasound-based real-time neuro-navigation system that fuses intraoperative cerebral ultrasound with preoperative MRI and simultaneously displays an MRI slice coplanar to an ioUS image. Results: 58 patients underwent surgery at our institution for intracranial lesion removal with image guidance using a US system equipped with fusion imaging for neuro-navigation. In all cases the initial (external) registration error obtained by the corresponding anatomical landmark procedure was below 2 mm and the craniotomy was correctly placed. The transdural window gave satisfactory US image quality and the lesion was always detectable and measurable on both axes. Brain shift/deformation correction has been successfully employed in 42 cases to restore the co-registration during surgery. The accuracy of ioUS/MRI fusion/overlapping was confirmed intraoperatively under direct visualization of anatomic landmarks and the error was < 3 mm in all cases (100 %). Conclusion: Neuro-navigation using intraoperative US integrated with preoperative MRI is reliable, accurate and user-friendly. Moreover, the adjustments are very helpful in correcting brain shift and tissue distortion. This integrated system allows true real-time feedback during surgery and is less expensive and time-consuming than other intraoperative imaging techniques, offering high precision and orientation. Ziel: Brain Shift und Gewebeverschiebung während der chirurgischen Entfernung intrakranialer Raumforderungen sind die limitierenden Faktoren bei der Neuronavigation (NN), welche aktuell hauptsächlich präoperative Bilder einsetzt. Ultraschall (US) als Echtzeit-Bildgebung wird bei neurochirurgischen Prozeduren zunehmend angewandt. Vielen Neurochirurgen fehlt aber die US Expertise, da schon in der Ausbildung standarisierte (typisch axiale) CT und MRT Schnittbilder für die Navigation bevorzugt eingesetzt werden und somit die Sicherheit bei der sonografischen Identifikation anatomischer Strukturen fehlt. Daher ist eine intraoperative Echtzeitfusion zwischen präoperativen CT bzw. MRT Bildern und intraoperativem Ultraschall (ioUS) im Rahmen der virtuellen Navigation (VN) außerordentlich wünschenswert. Wir präsentieren hier die bei uns angewandte Methode für die Echtzeitnavigation bei der Entfernung verschiedener Hirntumoren. Material und Methoden: Wir wandten die Bildfusion mit virtueller Navigation bei der chirurgischen Entfernung von Hirntumoren an. Zum Einsatz kam ein Neuronavigationssystem, welches intraoperative Ultraschallbilder mit präoperativen MRT Bildern in Echtzeit überlagert und zu jedem US Bild simultan die dazu passende ko-planare MRT-Schnittebene anzeigt. Ergebnisse: Die US-basierte Neuronavigation wurde bei der Operation von 58 Patienten mit Hirntumoren eingesetzt. In allen Fällen war der Fehler der initialen (externen) Registrierung, welche anhand von anatomischen Landmarken erfolgte, unterhalb von 2mm und die Kraniotomie konnte korrekt angesetzt werden. Die Bildqualität des transduralen Ultraschalls war gut und die Läsion konnte bei allen Patienten detektiert und in allen Achsen vermessen werden. Die Korrektur von Brain Shift sowie Gewebeverschiebung gelang erfolgreich in 42 Fällen zur Wiederherstellung der intraoperativen Co-Registrierung. Die Genauigkeit der Überlagerung von ioUS und MRT wurde intraoperativ anhand der Visualisierung anatomischer Landmarken überprüft und der Fehler lag in allen Fällen (100 %) unterhalb von 3mm. Schlussfolgerung: Neuronavigation mit Hilfe von in präoperative MRT Bilder integrierten intraoperativen US Bildern ist eine zuverlässige, genaue und anwenderfreundliche neue Technologie. Brain Shift und Gewebeverlagerungen können anhand verschiedener Einstellungsmöglichkeiten am System erfolgreich intraoperativ korrigiert werden. Das integrierte System ermöglicht eine intraoperative Überprüfung der Navigation in Echtzeit und ist dabei kostengünstiger und weniger Zeit aufwändig als andere intraoperative Bild-gebende Verfahren, trotzdem aber hoch präzise.

This publication has 16 references indexed in Scilit: