Signal amplification in a nanomechanical Duffing resonator via stochastic resonance

Abstract
The authors experimentally study stochastic resonance in a nonlinear bistable nanomechanical doubly clamped beam resonator, which is capacitively excited by an adjacent gate electrode. The resonator is tuned to its bistability region by an intense pump near a point of equal transition rates between its two metastable states. The pump is amplitude modulated, inducing modulation of the activation barrier between the states. When noise is added to the excitation, resonator’s displacement exhibits noise dependent amplification of the modulation signal. They measure resonator’s response in the time and frequency domains, the spectral amplification, and the statistical distribution of the jump time.