Hindlimb suspension diminishes femoral cross‐sectional growth in the rat

Abstract
Growth, functional adaptation, and torsional strength were examined in the femora of 39-day-old male Sprague-Dawley rats subjected to hindlimb suspension for 0, 1, 2, 3, or 4 weeks and were compared with measurements for age-matched control animals. Our goal was to understand the effect of reduced loading on the normal age-related changes in femoral properties during growth. The control animals exhibited growth-related increases in all geometric and torsional properties of the femur. The mean body mass and femoral length of the hindlimb-suspended rats were similar to those of the controls throughout the experiment. Over 4 weeks, the femoral cross-sectional and torsional measurements from the hindlimb-suspended rats demonstrated increases in comparison with the basal values (+33% cross-sectional area, +64% polar moment of inertia, +67% ultimate torque, and +181% torsional rigidity), but the age-matched controls showed significantly greater growth-related increases (+71% cross-sectional area, +136% polar moment of inertia, +127% ultimate torque, and +367% torsional rigidity). The differences in femoral structural strength between the hindlimb-suspended animals and the age-matched controls were attributable to differences in altered cross-sectional geometry.