Developing Reagents To Orient Fullerene Derivatives. Formation and Structural Characterization of (η2-C60O)Ir(CO)Cl(As(C6H5)3)2

Abstract
In order to obtain crystals of fullerene oxides that are suitable for single-crystal X-ray diffraction, the reactions between C(60)O and Vaska type iridium complexes have been examined. While reaction with Ir(CO)Cl(P(C(6)H(5))(3))(2)(and with triphenylphosphine but not triphenylarsine) results in partial deoxygenation of the fullerene epoxide, reaction with Ir(CO)Cl(As(C(6)H(5))(3))(2)()()produces crystalline (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2).4.82C(6)H(6).0.18CHCl(3). Black triangular prisms of (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2).4.82C(6)H(6).0.18CHCl(3)form in the monoclinic space group P2(1)/n with a = 14.662(2) Å, b = 19.836(2) Å, c = 28.462(5) Å, and beta = 100.318(12) degrees at 123 (2) K with Z = 4. Refinement (on F(2)) of 10 472 reflections and 1095 parameters with 10 restraints yielded wR2 = 0.152 and a conventional R = 0.066 (for 7218 reflections with I > 2.0sigma(I)). The structure shows that the iridium complex is bound to a 6:6 ring junction of the fullerene with four partially occupied sites for the epoxide oxygen atom. Thus, while deoxygenation of the fullerene does not occur upon reaction with Ir(CO)Cl(AsPh(3))(2), there is a greater degree of disorder in (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2)than previously reported for (eta(2)-C(60)O)Ir(CO)Cl(PPh(3))(2).

This publication has 21 references indexed in Scilit: