Generator-Damped Torsional Vibrations of a Vertical Axis Wind Turbine

Abstract
Torsional vibrations may be a critical issue for those vertical axis wind turbines having long drive trains as compared with standard horizontal axis wind turbines. Such vibrations are studied by simulation for two different types of generators used with a vertical axis wind turbine, namely a conventional induction generator with a gearbox and a directly-driven multipole synchronous generator. The synchronous generator has been designed with FEM simulations. The didactic calculations show from first principles that a directly-driven generator is to be preferred when torsional vibrations are considered, since the eigenfrequency of the fundamental vibration is greater for a directly driven generator than otherwise. Thus, the risk of resonance is reduced in a stiff assembly. The generator damping of the vibrations for the simulated, directly-driven synchronous generator is also studied.