Metabolic gene–deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes

Abstract
Genome-scale metabolic models have a promising ability to describe cellular phenotypes accurately. Here we show that strains of Escherichia coli carrying a deletion of a single metabolic gene increase their growth rates (by 87% on average) during adaptive evolution and that the endpoint growth rates can be predicted computationally in 39 of 50 (78%) strains tested. These results show that computational models can be used to predict the eventual effects of genetic modifications.