A unified physical model of switching behavior in oxide-based RRAM

Abstract
Excellent bipolar resistive switching (RS) behavior was achieved in TiN/ZnO/Pt resistive random access memory (RRAM) devices. A unified physical model based on electrons hopping transport among oxygen vacancies along the conductive filaments (CFs) is proposed to elucidate the RS behavior in the RRAM devices. In the unified physical model, a new reset mechanism due to the depletion of electrons in oxygen vacancies and the recovery of electron-depleted oxygen vacancies (VO +) with non-lattice oxygen ions (O2-) is proposed and identified.