Small-signal modeling of average current-mode control

Abstract
A recently proposed average current-mode control is analyzed. A complete small-signal model for the control scheme is developed. The model is accurate up to half the switching frequency. By closing the current loop, a flat control-to-inductor current transfer function, up to half the switching frequency, can be achieved. This control scheme enables the converter to behave as an ideal current source. The subharmonic oscillation, as frequently reported in peak current-mode control, also exists in this control. This subharmonic oscillation can be eliminated by choosing a proper gain of the compensation network in the current loop. Model predictions are confirmed experimentally.

This publication has 1 reference indexed in Scilit: