Characterization of Diversity in Colletotrichum acutatum sensu lato by Sequence Analysis of Two Gene Introns, mtDNA and Intron RFLPs, and Mating Compatibility

Abstract
A diverse collection of isolates identified as Colletotrichum acutatum, including a range of fruit-rot and foliar pathogens, was examined for mtDNA RFLPs and RFLPs and sequence variation of a 900-bp intron of the glutamine synthetase (GS) gene and a 200-bp intron of the glyceraldehyde-3-phosphate dehydrogenase (GPDH) gene. RFLPs of mtDNA, RFLPs of the 900-bp GS intron and sequence analysis of each intron identified the same seven distinct molecular groups, or clades, within C. acutatum sensu lato. Sequence analysis produced highly concordant tree topologies with definitive phylogenetic relationships within and between the clades. The clades might represent phylogenetically distinct species within C. acutatum sensu lato. Mating tests also were conducted to assess sexual compatibility with tester isolates known to outcross to form the teleomorph Glomerella acutata. Mating compatibility was identified within one clade, C, and between two phylogenetically distinct clades, C and J4. The C clade represented isolates from a wide range of hosts and geographic origins. J4 clade contained isolates from Australia or New Zealand recovered from fruit rot and pine seedlings with terminal crook disease. That isolates in two phylogenetically distinct clades were capable of mating suggests that genetic isolation occurred before reproductive isolation. No other isolates were sexually compatible with the mating testers, which also were in groups C and J4. Certain clades identified by mtDNA and intron analysis (D1, J3 and J6) appeared to represent relatively host-limited populations. Other clades (C1, F1 and J4) contained isolates from a wide range of hosts. Isolates described as C. acutatum f. sp. pineum were clearly polyphyletic.