L-DOPA Is an Endogenous Ligand for OA1

Abstract
Albinism is a genetic defect characterized by a loss of pigmentation. The neurosensory retina, which is not pigmented, exhibits pathologic changes secondary to the loss of pigmentation in the retina pigment epithelium (RPE). How the loss of pigmentation in the RPE causes developmental defects in the adjacent neurosensory retina has not been determined, but offers a unique opportunity to investigate the interactions between these two important tissues. One of the genes that causes albinism encodes for an orphan GPCR (OA1) expressed only in pigmented cells, including the RPE. We investigated the function and signaling of OA1 in RPE and transfected cell lines. Our results indicate that OA1 is a selective L-DOPA receptor, with no measurable second messenger activity from two closely related compounds, tyrosine and dopamine. Radiolabeled ligand binding confirmed that OA1 exhibited a single, saturable binding site for L-DOPA. Dopamine competed with L-DOPA for the single OA1 binding site, suggesting it could function as an OA1 antagonist. OA1 response to L-DOPA was defined by several common measures of G-protein coupled receptor (GPCR) activation, including influx of intracellular calcium and recruitment of β-arrestin. Further, inhibition of tyrosinase, the enzyme that makes L-DOPA, resulted in decreased PEDF secretion by RPE. Further, stimulation of OA1 in RPE with L-DOPA resulted in increased PEDF secretion. Taken together, our results illustrate an autocrine loop between OA1 and tyrosinase linked through L-DOPA, and this loop includes the secretion of at least one very potent retinal neurotrophic factor. OA1 is a selective L-DOPA receptor whose downstream effects govern spatial patterning of the developing retina. Our results suggest that the retinal consequences of albinism caused by changes in melanin synthetic machinery may be treated by L-DOPA supplementation. Albinism is the loss of pigmentation caused by mutations in one of several different genes that alter pigment synthesis by different mechanisms. In the eye, albinism impairs sensory retina development and causes significant vision problems. Regardless of the genetic mutation that causes albinism, the associated vision problems are the same. Interestingly, none of the pigmentation genes are expressed by the sensory retinal cells affected by albinism but by neighboring, retinal pigment epithelial cells (RPE). Furthermore, loss of pigmentation in RPE somehow leads to imprecise retinal development. To investigate this cellular relationship, we studied OA1, which is encoded by a gene in which mutations cause ocular albinism. OA1 is unique among proteins involved with albinism because OA1 is a potential receptor that could participate in signal transduction rather than being a direct member of the pigment synthesis machinery. We show that the ligand for OA1 is L-DOPA, thus removing OA1 from orphan G-protein coupled receptor (GPCR) status. L-DOPA is a by-product of pigment synthesis, indicating that pigment synthesis and OA1 signaling are intertwined. OA1 signaling is highly selective for L-DOPA, and we show that two closely related molecules, dopamine and tyrosine, bind to OA1 but fail to stimulate signaling. We also show that OA1 signaling controls secretion of a potent neuron survival factor. Taken together, our data suggest that all forms of albinism produce the same retinal defects because of a final common pathway through OA1 signaling with downstream effects on RPE neurotrophic factor secretion.