An Immersive Virtual Reality Environment for Diagnostic Imaging

Abstract
Purpose: Advancements in and adoption of consumer virtual reality (VR) are currently being propelled by numerous upcoming devices such as the Oculus Rift. Although applications are currently growing around the entertainment field, wide-spread adoption of VR devices opens up the potential for other applications that may have been unfeasible with past implementations of VR. A VR environment may provide an equal or larger screen area than what is provided with the use of multiple conventional displays while remaining comparatively cheaper and more portable making it an attractive option for diagnostic radiology applications. Methods A VR application for the viewing of multiple image slices was designed using: the Oculus Rift head-mounted display (HMD), Unity, and 3D Slicer. Volumes loaded within 3D Slicer are sent to a Unity application that proceeds to render a scene for the Oculus Rift HMD. Users may interact with the images adjusting windowing and leveling using a handheld gamepad controller. Multiple images may be brought closer to the user for detailed inspection. Results Application usage was demonstrated with the simultaneous visualization of longitudinal slices of a serial CT scan of a patient with a lung nodule. Pilot studies for validating usage of the VR system for differential diagnosis and remote collaboration were performed. Initial results suggest that using the VR system increased both task load and time taken to complete tasks, however, the resulting accuracy in assessing nodule growth of nodules was not significantly different than that achieved using a DICOM viewer application on a traditional display.
Funding Information
  • National Institute of Biomedical Imaging and Bioengineering (US) (P41EB015902)
  • National Institute of Biomedical Imaging and Bioengineering (US) (P41EB015898)
  • Neuroimage Analysis Center
  • Siemens Healthcare
  • Cancer Care Ontario