Chronic lithium administration ameliorates 2,4,6‐trinitrobenzene sulfonic acid‐induced colitis in rats; potential role for adenosine triphosphate sensitive potassium channels

Abstract
Inflammatory bowel disease (IBD) is a multi-factorial disease with an unknown etiology characterized by oxidative stress, leukocyte infiltration and a rise in inflammatory cytokines. This study was conducted to investigate lithium in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced chronic model of experimental IBD, and the contribution of potassium channels as a possible underlying mechanism. Experimental IBD was induced in rats by a single colonic administration of 10 mg of TNBS. Lithium, Glibenclamide (a potassium channel blocker), Lithium + Glibenclamide, Cromakalim or Lithium+Glibenclamide+ Cromakalim were given twice daily for 7 successive days. At the end of the experiment, macroscopic and histopathologic scores, colonic malondialdehyde (MDA), tumor necrosis factor-α (TNF-α) level, and myeloperoxidase (MPO) activity as well as plasma lithium level were assessed. Both macroscopic and histological features of colonic injury were markedly ameliorated by lithium. Likewise, the elevated amounts of MPO and MDA were diminished as well as those of TNF-α (P < 0.05). Glibenclamide reversed the effect of lithium on these markers, Addition of cromakalim abrogated the effects mediated by glibenclamide and markedly decreased MPO activity, MDA level and TNF-α content (P < 0.0.05). Macroscopic and microscopic scores and biochemical markers were significantly decreased in Cromakalim-treated animals. No significant difference was observed between TNBS and Glibenclamide groups. Lithium exerts prominent anti-inflammatory effects on TNBS-induced colitis in rats. Potassium channels contribute to these beneficial properties.