Abstract
FIR digital filters with discrete coefficient values selected from the powers-of-two coefficient space are designed using the methods of integer programming. The frequency responses obtained are shown to be superior to those obtained by simply rounding the coefficients. Both the weighted minimax and the weighted least square error criteria are considered. Using a weighted least square error criterion, it is shown that it is possible to predict the improvement that can be expected when integer quadratic programming is used instead of simple coefficient rounding.

This publication has 3 references indexed in Scilit: