Inhibition of Human Sperm Motility by Contraceptive Anti-Eppin Antibodies from Infertile Male Monkeys: Effect on Cyclic Adenosine Monophosphate1

Abstract
Epididymal protease inhibitor (eppin [official symbol, SPINLW1]) is of interest as a male contraceptive target because of its specificity and location on the human sperm surface. We have examined the effect of anti-eppin antibodies from infertile male monkeys and the effect of recombinant human semenogelin on human sperm motility. Anti-eppin antibodies significantly decreased the progressive motility of human spermatozoa as measured by decreased total distance traveled, decreased straight-line distance, and decreased velocity. Anti-eppin treatment of spermatozoa significantly increased the amount of cAMP present in nonprogressive spermatozoa; however, approximately 25% of antibody-treated spermatozoa could be rescued by the addition of cAMP-acetoxymethyl ester, indicating that anti-eppin-treated spermatozoa have a compromised ability to utilize cAMP. Addition of recombinant human semenogelin has a concentration-dependent inhibitory effect on progressive motility (increased tortuosity and decreased velocity). We tested the hypothesis that anti-eppin antibodies bound to eppin would subsequently block semenogelin binding to eppin. Anti-eppin antibodies from infertile monkeys inhibited eppin from binding to semenogelin. Addition of affinity-purified antibodies made to the dominant C-terminal epitope of eppin had an inhibitory effect on progressive motility (increased tortuosity, decreased velocity, and straight distance). Our results suggest that the eppin-semenogelin binding site is critical for the removal of semenogelin in vivo during semen liquefaction and for the initiation of progressive motility. We conclude that the eppin-semenogelin binding site on the surface of human spermatozoa is an ideal target for a nonsteroidal male contraceptive.