Synthesizing object receiving motions of humanoid robots with human motion database

Abstract
This paper presents a method for synthesizing motions of a humanoid robot that receives an object from a human, with focus on a natural object passing scenario where the human initiates the passing motion by moving an object towards the robot, which continuously adapts its motion to the observed human motion in real time. In this scenario, the robot not only has to recognize and adapt to the human action but also has to synthesize its motion quickly so that the human does not have to wait holding an object. We solve these issues by using a human motion database obtained from two persons performing the object passing task. The rationale behind this approach is that human performance of such a simple task is repeatable, and therefore the receiver (robot) motion can be synthesized by looking up the passer motion in a database. We demonstrate in simulation that the robot can start extending the arm at an appropriate timing and take hand configurations suitable for the object being passed. We also perform hardware experiments of object handing from a human to a robot.

This publication has 11 references indexed in Scilit: