Measurement of Internal Movements within the 30S Ribosomal Subunit Using Förster Resonance Energy Transfer

Abstract
We have used Förster resonance energy transfer (FRET) to study specific conformational changes in the Escherichia coli 30 S ribosomal subunit that occur upon association with the 50 S subunit. By measuring energy transfer between 13 different pairs of fluorescent probes attached to specific positions on 30 S subunit proteins, we have monitored changes in distance between different locations within the 30 S subunit in its free and 50 S-bound states. The measured distance changes provide restraints for modeling the movement that occurs within the 30 S subunit upon formation of the 70 S ribosome in solution. Treating the head, body, and platform domains of the 30 S subunit as simple rigid bodies, the lowest-energy solution converges on a model that satisfies each of the individual FRET restraints. In this model, the 30 S subunit head tilts towards the 50 S subunit, similar to the movement found in comparing 30 S subunits and 70 S ribosomes from X-ray and cryo-electron microscope structures, and the platform is predicted to undergo a clock-wise rotation upon association.
Funding Information
  • Ford Foundation
  • W. M. Keck Foundation
  • National Institutes of Health (PHS 5P41-RR03155)
  • Damon Runyon Cancer Research Foundation