Model for the fingering instability of spreading surfactant drops

Abstract
We show that the Marangoni effect drives the fingering instability observed at the edge of an aqueous surfactant drop spreading on a thin film of water. A calculation of the unperturbed flow profile demonstrates that the spreading of the drop is controlled by the dynamics of a thin layer which develops in front of the drop. The surface-tension gradient in this region leads to the fingering instability via a mechanism mathematically similar to that in Hele-Shaw flow despite the very different underlying physics.

This publication has 6 references indexed in Scilit: