Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide

Abstract
Peroxynitrite and hydrogen peroxide are mediators of cytotoxicity. This study shows that the peroxynitrite anion reacts with hydrogen peroxide to release oxygen accompanied by emission of chemiluminescence (CL). Direct characterization of this light emission attributes it to the transition of singlet molecular oxygen to the triplet ground state. Chemiluminescence was monitored: (i) by dimol light emission in the red spectral region (> 610 nm) using a red-sensitive photomultiplier; and (ii) by monomol light emission in the infrared (1270 nm) with a liquid nitrogen-cooled germanium diode. These properties of photoemission and the enhancing effect of deuterium oxide on CL intensity as well as the quenching effect of sodium azide are diagnostic of molecular oxygen in the excited singlet state. For comparison, singlet molecular oxygen arising from the thermolysis of the water-soluble endoperoxide of 3,3′-(1,4-naphthylidene)dipropionate or from the hypochlorite/H 2 O 2 system was also monitored. These novel observations identify a potential singlet oxygen-dependent mechanism contributing to cytotoxicity mediated by peroxynitrite and hydrogen peroxide.