Abstract
Hot-wire measurements were carried out in boundary layers developing along a flat plate over which wakes passed periodically. The wakes were generated by cylinders moving on a squirrel cage in front of the plate leading edge. The flow situation studied is an idealization of that occurring on turbomachinery blades where unsteady wakes are generated by the preceding row of blades. The influence of wake-passing frequency on the boundary-layer development and in particular on the transition processes was examined. The hot-wire signals were processed to yield ensemble-average values and the fluctuations could be separated into periodic and stochastic turbulent components. Hot-wire traces are reported as well as time variations of periodic and ensemble-averaged turbulent fluctuations and of the boundary-layer integral parameters, yielding a detailed picture of the flow development. The Reynolds number was relatively low so that in the limiting case of a boundary layer undisturbed by wakes this remained laminar over the full length of the test plate. When wakes passed over the plate, the boundary layer was found to be turbulent quite early underneath the free-stream disturbances due to the wakes, while it remained initially laminar underneath the undisturbed free-stream regions in between. The turbulent boundary-layer stripes underneath the disturbed free stream travel downstream and grow together so that the embedded laminar regions disappear and the boundary layer becomes fully turbulent. The streamwise location where this happens moves upstream with increasing wake-passing frequency, and a clear correlation could be determined in the experiments. The results are also reported in a mean Lagrangian frame by following fluid parcels underneath the disturbed and undisturbed free stream, respectively, as they travel downstream.

This publication has 10 references indexed in Scilit: