Theoretical Analysis of the Terahertz Spectrum of the High Explosive PETN

Abstract
The experimental solid-state terahertz (THz) spectrum (3 to 120 cm−1) of the high explosive pentaerythritol tetranitrate (PETN, C5H6N4O12) has been modeled using solid-state density functional theory (DFT) calculations. Solid-state DFT, employing the BP density functional, is in best qualitative agreement with the features in the previously reported THz spectrum. The crystal environment of PETN includes numerous intermolecular hydrogen-bonding interactions that contribute to large (up to 80 cm−1) calculated shifts in molecular normal-mode positions in the solid state. Comparison of the isolated-molecule and solid-state normal-mode calculations for a series of density functionals reveals the extent to which the inclusion of crystal-packing interactions and the relative motions between molecules are required for correctly reproducing the vibrational structure of solid-state THz spectra. The THz structure below 120 cm−1 is a combination of both intermolecular (relative rotations and translations) and intramolecular (torsions, large amplitude motions) vibrational motions. Vibrational-mode analyses indicate that the first major feature (67.2 cm−1) in the PETN THz spectrum contains all of the optical rotational and translational cell modes and no internal (molecular) vibrational modes.

This publication has 31 references indexed in Scilit: