Abstract
The human polyomavirus JC (JCV) infects most healthy adults without causing any disease. In the setting of severe deficit of cell-mediated immunity, such as in acquired immunodeficiency syndrome (AIDS), malignancies or in organ transplant recipients, JCV can reactivate and cause progressive multifocal leukoencephalopathy (PML), a deadly demyelinating disease of the central nervous system. The humoral immune response, measured by the presence of virus-specific immunoglobulin G (IgG) in the blood or by intrathecal synthesis of IgG in the cerebrospinal fluid (CSF), is unable to contain the progression of PML. CD4+ T lymphocytes recognize extracellular viral proteins that have been degraded into peptides through the exogenous pathway and presented on major histocompatibility complex (MHC) class II molecules at the surface of antigen-presenting cells. Consistent with their underlying immunosuppression, the proliferative response of CD4+ T lymphocytes to mitogens or JCV antigens is reduced in PML patients. CD8+ cytotoxic T lymphocytes recognize intracellularly synthesized viral proteins that have been degraded into peptides through the endogenous pathway, and presented on MHC class I molecules at the surface of virus-infected cells. One of such JCV peptide, the VP1(p100) ILMWEAVTL, has been characterized as a cytotoxic T lymphocyte (CTL) epitope in HLA-A *0201 + PML survivors. Staining with the corresponding A *0201/JCV VP1(p100) tetrameric complex showed that VP1(p100)-stimulated peripheral blood mononuclear cells (PBMCs) of 5/7 (71%) PML survivors had JCV-specific CTL, versus none of 6 PML progressors (P = .02). This cellular immune response may therefore be crucial in the prevention of PML disease progression and the tetramer staining assay may be used as a prognostic marker in the clinical management of these patients.