IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect

Abstract
Multiple myeloma (MM) patients who receive killer cell Ig–like receptor (KIR) ligand–mismatched, T cell–depleted, allogeneic transplantation may have a reduced risk of relapse compared with patients who receive KIR ligand–matched grafts, suggesting the importance of this signaling axis in the natural killer (NK) cell-versus-MM effect. Expanding on this concept, IPH2101 (1-7F9), an anti-inhibitory KIR mAb, enhances NK-cell function against autologous MM cells by blocking the engagement of inhibitory KIR with cognate ligands, promoting immune complex formation and NK-cell cytotoxicity specifically against MM cell targets but not normal cells. IPH2101 prevents negative regulatory signals by inhibitory KIR, whereas lenalidomide augments NK-cell function and also appears to up-regulate ligands for activating NK-cell receptors on MM cells. Lenalidomide and a murine anti-inhibitory NK-cell receptor Ab mediate in vivo rejection of a lenalidomide-resistant tumor. These mechanistic, preclinical data support the use of a combination of IPH2101 and lenalidomide in a phase 2 trial for MM.