Fate of Hexabromocyclododecane (HBCD), A Common Flame Retardant, In Polystyrene-Degrading Mealworms: Elevated HBCD Levels in Egested Polymer but No Bioaccumulation

Abstract
As awareness of the ubiquity and magnitude of plastic pollution has increased, so has interest in the long-term fate of plastics. To date, however, the fate of potentially toxic plastic additives has received comparatively little attention. In this study, we investigated the fate of the flame retardant hexabromocyclododecane (HBCD) in polystyrene (PS)-degrading mealworms and in mealworm-fed shrimp. Most of the commercial HBCD consumed by the mealworms was egested in frass within 24 hours (1-log removal) with nearly a 3-log removal after 48 hours. In mealworms fed PS containing high HBCD levels, only 0.27 ± 0.10%, of the ingested HBCD remained in the mealworm body tissue. This value did not increase over the course of the experiment, indicating little or no bioaccumulation. Additionally, no evidence of higher trophic level bioaccumulation or toxicity was observed when L. vannamei (Pacific whiteleg shrimp) were fed mealworm biomass grown with PS containing HBCD. Differences in shrimp survival were attributable to the fraction of mealworm biomass incorporated into the diet, not HBCD. We conclude that the environmental effects of PS ingestion need further evaluation as the generation of smaller, more contaminated particles is possible, and may contribute to toxicity at nanoscale.
Funding Information
  • Division of Graduate Education (DGE-1656518)
  • Stanford University
  • Stanford Woods Institute for the Environment (1197667-10-WTAZB)