Abstract
In the presence of ATP and a cytosolic factor, cholera toxin fragment A1 catalyzes the transfer of ADP-ribose from NAD to a number of soluble and membrane-bound proteins of the pigeon erythrocyte. Evidence is presented that suggests that the most readily modified membrane protein (Mr 42,000) is the adenylate cyclase-associated GTP-binding protein. Its modification by toxin is stimulated by guanine nucleotides. Adenylate cyclase activity increases in parallel with the addition of ADP-ribose to this protein and decreases in parallel with the subsequent reversal of ADP-ribosylation by toxin and nicotinamide. The protein is only accessible to toxin A subunits if the erythrocytes are lysed. When adenylate cyclase activity reaches a maximum, the number of ADP-ribose residues bound to this protein (about 1500 per cell) is similar to the reported number of beta-adrenergic receptors.

This publication has 14 references indexed in Scilit: