Successful cryopreservation of mouse blastocysts using a new vitrification solution

Abstract
Summary. Mouse blastocysts were exposed to solutions containing four concentrations (10, 20, 30 and 40% v/v) of six permeating cryoprotectants (glycerol, ethylene glycol, propylene glycol, dimethyl sulfoxide, 1,3-butanediol and 2,3-butanediol) in phosphate-buffered saline (PBS) with calf serum (CS) at room temperature (20–22°C). Blastocysts were exposed to these solutions for various periods, diluted into PBS plus CS with or without 1 mol trehalose l−1 solution and their subsequent survival in vitro was examined. Two-way anova showed a significant interaction (P < 0·01) between cryoprotectant type, concentration of cryoprotectant and method of dilution. However, no significant interaction was observed between cryoprotectant type and duration of exposure. Results suggest that cryoprotectant-induced injury to nonfrozen blastocysts is variable and depends on the cryoprotectant used. On the basis of toxicity assays, ethylene glycol was the least harmful and was combined with dimethyl sulfoxide and 1,3-butanediol to produce a new vitrification solution. Mouse blastocysts were successfully cryopreserved using a vitrification solution (designated as VSv) consisting of 20% ethylene glycol, 20% dimethyl sulfoxide and 10% 1,3-butanediol (v/v). Embryos were equilibrated in two steps, first in an equilibration solution (designated as ESv: 10% ethylene glycol, 10% dimethyl sulfoxide and 5% 1,3-butanediol; v/v) and then to VSv or one-step in VSv at different exposure times at room temperature, and then vitrified by direct plunging into liquid nitrogen. High developmental rates were obtained in vitro when the embryos were exposed to ESv and VSv for 3 and 0.5 min, respectively (96·2%) or exposed to VSv for 0·5 min (95·4%). Prolonged exposure time proved detrimental to subsequent embryo development in vitro. When vitrified warmed embryos were transferred immediately to pseudopregnant recipients, the rate of development to normal fetuses did not significantly differ from that of the nonvitrified control (two-step, 54·2 and one-step, 45·0 versus 60·0%, P > 0·05).