Antioxidants Inhibit Indoleamine 2,3-Dioxygenase in IFN-γ-Activated Human Macrophages: Posttranslational Regulation by Pyrrolidine Dithiocarbamate

Abstract
Induction of the heme-containing indoleamine 2,3-dioxygenase (IDO) by IFN-γ is implicated in anti-microbial and pro-inflammatory activities of human macrophages. Antioxidants can modulate the expression of immune and inflammatory genes, and pyrrolidine dithiocarbamate (PDTC) is a frequently used antioxidant to inhibit the transcription factor NF-κB. Here we show that IFN-γ treatment of human monocyte-derived macrophages (hMDMs) increased the proportion of oxidized glutathione. PDTC attenuated this increase and inhibited IDO activity, although it increased IDO protein expression and did not affect IDO mRNA expression and enzyme activity directly. Other antioxidants, 2-ME, ebselen, and t-butyl hydroquinone, inhibited IDO protein expression. Similar to PDTC, the heme biosynthesis inhibitor succinylacetone (SA) and the iron-chelator pyridoxal isonicotinoyl hydrazone inhibited cellular IDO activity without affecting protein expression, whereas addition of hemin or the heme precursor δ-aminolevulinic acid increased IDO activity. Also, incubation of IFN-γ-activated hMDM with δ-[14C]-aminolevulinic acid resulted in the incorporation of label into immunoprecipitated IDO, a process inhibited by PDTC and SA. Furthermore, supplementation of lysates from PDTC- or SA-treated hMDM with hemin fully restored IDO activity to control levels, and hemin also reversed the inhibitory action of SA but not PDTC in intact cells. Together these results establish a requirement for de novo heme synthesis for IDO activity in IFN-γ-activated hMDM. They show that, similar to other pro-inflammatory proteins, the activity of IDO is modulated by antioxidants though in the case of PDTC this takes place posttranslationally, in part by limiting the availability of heme for the formation of holo-IDO.