Genomics of type 2 diabetes mellitus: implications for the clinician

Abstract
Our understanding of the genetics of type 2 diabetes mellitus (T2DM) has changed, in part owing to implementation of genome-wide association studies as a method for unraveling the genetic architecture of complex traits. These studies enable a global search throughout the nuclear genome for variants that are associated with specific phenotypes. Currently, single nucleotide polymorphisms in about 24 different genetic loci have been associated with T2DM. Most of these genetic loci are associated with the insulin secretion pathway rather than insulin resistance. study design, heritability differences and the intrinsic properties of in vivo insulin resistance measures might partially explain why only a few loci associated with insulin resistance have been detected through genome-wide association approaches. Despite the success of these approaches at detecting loci associated with T2DM, currently known associations explain only a small amount of the genetic variance involved in the disease. Compared with previous studies, larger cohorts might be needed to identify variants of smaller effect sizes and lower allele frequencies. Finally, the current list of genetic loci that are related to T2DM does not seem to offer greater predictive value in determining diabetes risk than do commonly used phenotypic risk factors and family history.