Pruning the Volterra Series for Behavioral Modeling of Power Amplifiers Using Physical Knowledge

Abstract
This paper presents an efficient and effective approach to pruning the Volterra series for behavioral modeling of RF and microwave power amplifiers. Rather than adopting a pure "black-box" approach, this model pruning technique is derived from a physically meaningful block model, which has a clear linkage to the underlying physical behavior of the device. This allows all essential physical properties of the PA to be retained, but significantly reduces model complexity by removing unnecessary coefficients from the general Volterra series. A reduced-order model of this kind can be easily extracted from standard time/frequency-domain measurements or simulations, and may be simply implemented in system-level simulators. A complete physical analysis and a systematic derivation are presented, together with both computer simulations and experimental validations

This publication has 13 references indexed in Scilit: