Context-based surface completion

Abstract
Sampling complex, real-world geometry with range scanning devices almost always yields imperfect surface samplings. These "holes" in the surface are commonly filled with a smooth patch that conforms with the boundary. We introduce a context-based method: the characteristics of the given surface are analyzed, and the hole is iteratively filled by copying patches from valid regions of the given surface. In particular, the method needs to determine best matching patches, and then, \'02t imported patches by aligning them with the surrounding surface. The completion process works top down, where details refine intermediate coarser approximations. To align an imported patch with the existing surface, we apply a rigid transformation followed by an iterative closest point procedure with nonrigid transformations. The surface is essentially treated as a point set, and local implicit approximations aid in measuring the similarity between two point set patches. We demonstrate the method at several point-sampled surfaces, where the holes either result from imperfect sampling during range scanning or manual removal

This publication has 21 references indexed in Scilit: