A Synergistic Effect between Cholesterol and Tryptophan-Flanked Transmembrane Helices Modulates Membrane Curvature

Abstract
The aim of this study was to gain insight into the structural consequences of hydrophobic mismatch for membrane proteins in lipid bilayers that contain cholesterol. For this purpose, tryptophan-flanked peptides, designed to mimic transmembrane segments of membrane proteins, were incorporated in model membranes of unsaturated phosphatidylcholine bilayers of varying thickness and containing varying amounts of cholesterol. Analysis of the lipid organization by 31P NMR and cryo-TEM demonstrated the formation of an isotropic phase, most likely representing a cubic phase, which occurred exclusively in mixtures containing lipids with relatively long acyl chains. Formation of this phase was inhibited by incorporation of lysophosphatidylcholine. These results indicate that the isotropic phase is formed as a consequence of negative hydrophobic mismatch and that its formation is related to a negative membrane curvature. When either peptide or cholesterol was omitted from the mixture, isotropic-phase formation did not occur, not even when the concentrations of these compounds were significantly increased. This suggests that formation of the isotropic phase is the result of a synergistic effect between the peptides and cholesterol. Interestingly, isotropic-phase formation was not observed when the tryptophans in the peptide were replaced by either lysines or histidines. We propose a model for the mechanism of this synergistic effect, in which its dependence on the flanking residues is explained by preferential interactions between cholesterol and tryptophan residues.