Visual search task immediate training effects on task-related functional connectivity

Abstract
Brain plasticity occurs over the course of the human lifetime. Learning and training modify our neuronal synapses and adapt our brain activity, from priming effects in modal areas to higher-order changes in the association cortex. The current state of the art suggests that learning and training effects might induce large-scale brain connectivity changes. Here, we used task-fMRI data and graph-based approaches to study the immediate brain changes in functional connections associated with training on a visual search task, and the individual differences in learning were studied by means of brain-behavior correlations. In a previous work, we found that trained participants improved their response speed on a visual search task by 31%, whereas the control group hardly changed. In the present study, we showed that trained individuals changed regional connections (local links) in cortical areas devoted to the specific visual search processes and to areas that support information integration, and largely modified distributed connections (distant links) linking primary visual areas to specific attentional and cognitive control areas. In addition, we found that the individuals with the most enhanced connectivity in the dorsolateral prefrontal cortex performed the task faster after training. The observed behavioral and brain connectivity findings expand our understanding of large-scale dynamic readjustment of the human brain after learning experiences.
Funding Information
  • Spanish Department of Economy and Competitiveness (PSI2016-78805-R)
  • Spanish Department of Economy and Competitiveness (PSI2013-47504-R)
  • Universitat Jaume I (FPI prgram for PhD, Postdoctoral researcher grant)
  • Department of Education (FPU program for PhD, FPU research stay grant)