Magnetically mediated hyperthermia: current status and future directions

Abstract
The use of hyperthermia in the treatment of cancers is appealing because, as a physical therapy, hyperthermia would have far fewer restrictive side effects than chemotherapy and radiotherapy, and it could be used in combination with these therapies. However, the currently available modalities of hyperthermia are often limited by their inability to selectively target tumour tissue and, hence, they carry a high risk of collateral organ damage or they deposit heat in a very localized manner which can result in under-treatment of a tumour. Magnetically mediated hyperthermia (MMH) has the potential to address these shortcomings. MMH consists of the localization of magnetic particles or seeds within tumour tissue followed by exposure to an externally applied alternating magnetic field to cause them to heat. Since this concept was introduced (over 40 years ago), MMH has evolved into four general sub-classes: arterial embolization hyperthermia (AEH), direct injection hyperthermia (DIH), intracellular hyperthermia (IH) and interstitial implant hyperthermia (IIH). It is the purpose of this article to review these four sub-classes in terms of experimental or clinical results, advantages, limitations and current status.