Abstract
Introduction. A method for solving the problem on the action of a normal force moving on an infinite plate according to an arbitrary law is considered. This method and the results obtained can be used to study the effect of a moving load on various structures. Materials and Methods. An original method for solving problems of the action of a normal force moving arbitrarily along a freeform open curve on an infinite plate resting on an elastic base, is developed. For this purpose, a fundamental solution to the differential equation of the dynamics of a plate resting on an elastic base is used. It is assumed that the movement of force begins at a sufficiently distant moment in time. Therefore, there are no initial conditions in this formulation of the problem. When determining the fundamental solution, the Fourier transform is performed in time. When the Fourier transform is inverted, the image is expanded in terms of the transformation parameter into a series in Hermite polynomials. Results. The solution to the problem on an infinite plate resting on an elastic base, along which a concentrated force moves at a variable speed, is presented. A smooth open curve, consisting of straight lines and arcs of circles, was considered as a trajectory. The behavior of the components of the displacement vector and the stress tensor at the location of the moving force is studied, as well as the process of wave energy propagation, for which the change in the Umov-Poynting energy flux density vector is considered. The effect of the speed and acceleration of the force movement on the displacements, stresses and propagation of elastic waves is investigated. The influence of the force trajectory shape on the stress-strain state of the plate and on the nature of the propagation of elastic waves is studied. The results indicate that the method is quite stable within a wide range of changes in the speed of force movement. Discussion and Conclusions. The calculations have shown that the most significant factor affecting the stress-strain states of the plate and the propagation of elastic wave energy near the concentrated force is the speed of its movement. These results will be useful under studying dynamic processes generated by a moving load.