A Study of Cloud Mixing and Evolution Using PDF Methods. Part I: Cloud Front Propagation and Evaporation

Abstract
The evolution of mean relative humidity (RH) is studied in an isobaric system of clear and cloudy air mixed by an incompressible velocity field. A constant droplet radius assumption is employed that implies a simple dependence of the mixing time scale, τeddy, and the reaction (evaporation) time scale, τreact, on the specifics of the droplet size spectrum. A dilemma is found in the RH e-folding time, τefold, predicted by two common microphysical schemes: models that resolve supersaturation and ignore subgrid correlations, which gives τefoldτreact, and PDF schemes that assume instantaneous evaporation and predict τefoldτeddy. The resolution of this dilemma, Magnussen and Hjertager’s eddy dissipation concept (EDC) model τefold ∼ max(τeddy, τreact), is revealed in the results of 1D eddy diffusivity simulations and a new probability density function (PDF) approach to cloud mixing and evolution in which evaporation is explicitly resolved and the shape of the PDF is not specified a priori. The EDC model is shown to exactly solve the nonturbulent problem of spurious production of cloud-edge supersaturations described by Stevens et al. and produce good results in the more general turbulent case.