Multiresolution texture segmentation with application to diagnostic ultrasound images

Abstract
A multiresolution texture segmentation (MTS) approach to image segmentation that addresses the issues of texture characterization, image resolution, and time to complete the segmentation is presented. The approach generalizes the conventional simulated annealing method to a multiresolution framework and minimizes an energy function that is dependent on the resolution of the size of the texture blocks in an image. A rigorous experimental procedure is also proposed to demonstrate the advantages of the proposed MTS approach on the accuracy of the segmentation, the efficiency of the algorithm, and the use of varying features at different resolution. Semireal images, created by sampling a series of diagnostic ultrasound images of an ovary in vitro, were tested to produce statistical measures on the performance of the approach. The ultrasound images themselves were then segmented to determine if the approach can achieve accurate results for the intended ultrasound application. Experimental results suggest that the MTS approach converges faster and produces better segmentation results than the single-level approach.

This publication has 12 references indexed in Scilit: