Elastomer nanocomposites based on NBR/BR/nanoclay: morphology and mechanical properties

Abstract
Ternary elastomer nanocomposites based on acrylonitrile butadiene rubber (NBR), polybutadiene rubber (BR) and two types of nanoclay (Cloisite 15A and Cloisite 30B) were prepared using a laboratory scale two-roll mill. The effects of nanoclay composition on the cure characteristics, mechanical properties and morphology of NBR/BR (50/50) nanocomposite samples containing 3, 5, 7 and 10 wt% nanoclay were investigated. According to the cure characteristics both types of nanoclay caused a reduction in the scorch time and optimum cure time of the nanocomposite compound. X-ray diffraction patterns of all samples suggested the intercalation of polymer chains into the silicate layers. This was confirmed by transmission electron microscopy (TEM) micrographs. Dynamic mechanical thermal analysis (DMTA) was utilized to study the dispersion state of nanoclay within the elastomer blend matrix. The results showed the development of mechanical properties with the establishment of interactions between nanoclay and polymer chains. Antiknock and brake fluid uptake were also reduced with increasing the nanoclay content.