Realizing the benefits of restored periodicity in the advanced light source

Abstract
An essential feature of third generation storage ring based light sources is the magnetic lattice is designed with a high degree of periodicity. Tracking simulations show that if the periodicity is perturbed (by focusing errors, for example), nonlinear resonances become excited, which causes a reduction in the dynamic aperture. Therefore it is important to have a method to measure and correct perturbed periodicity. In this paper we study the effect of broken and restored periodicity at an actual third generation light source: the Advanced Light Source at Lawrence Berkeley National Laboratory. First, we show that it is possible to accurately determine the storage ring optic and thus the perturbation of the periodicity by fitting measured orbit response matrices. This method allows us to determine individual field gradient errors in quadrupoles and closed orbit errors in sextupoles. By varying individual quadrupole field strengths it is possible to correct the optic, largely restoring the lattice periodicity. A comparison is made of the performance of the storage ring before and after the optic is corrected. Measurements of the electron beam tails and the synchrotron light image reveal a large suppression in resonance excitation after the optic is corrected. Correcting the optic also improves the injection efficiency.

This publication has 2 references indexed in Scilit: