MINERAL AND/OR METAL CONTENT AS CRITICAL DETERMINANTS OF PARTICLE-INDUCED RELEASE OF IL-6 AND IL-8 FROM A549 CELLS

Abstract
Mineral particles in occupational exposure and ambient air particles may cause adverse health effects in humans. In this study the ability of different stone quarry particles to induce release of the proinflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8) from human epithelial lung cells (A549) was investigated. Size distribution within the PM10 fractions was quite similar for all particle samples, whereas mineral content and metal composition differed. Particles, containing minerals such as quartz, amphibole, chlorite, and epidote, induced a marked increase in IL-6 and IL-8 release. Particles composed mainly of plagioclase were much less effective. The most potent particle samples exhibited a relatively high content of transition metals such as iron. Exposure to identical masses or surface areas resulted in the same order of potency among the different particle samples. Significant cytotoxicity was observed only at higher concentrations of particle exposure. Thus, mineral composition and/or metal contents of particles from different stone quarries were critical determinants for the marked differences in potency to induce cytokine responses in human epithelial lung cells.