Magnetic field induced confinement–deconfinement transition in graphene quantum dots

Abstract
Massless Dirac particles cannot be confined by an electrostatic potential. This is a problem for making graphene quantum dots but confinement can be achieved with a magnetic field and here general conditions for confined and deconfined states are derived. There is a class of potentials for which the character of the state can be controlled at will. Then a confinement-deconfinement transition occurs which allows the Klein paradox to be probed experimentally in graphene dots. A dot design suitable for this experiment is presented.