In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure

Abstract
In situ characterization of catalysts by means of complementary spectroscopic techniques can be regarded as the first step towards rational catalyst design. Spurred by the growing interest of catalytic reactions in supercritical fluids and by several industrial reactions traditionally performed at high pressure (>10 bar), new demands and challenges are put to in situ spectroscopic characterization of heterogeneous catalytic reactions. In this article, we discuss the development and the use of spectroscopic and related techniques suitable for elucidating such high-pressure reactions. Selected examples from phase behaviour studies with a view cell, investigations with transmission and attenuated total reflection (ATR) infrared spectroscopy as well as X-ray absorption spectroscopy (EXAFS, XANES), are presented to show the strategies, opportunities and limitations of such high pressure in situ studies. Different facets appear to be important to gain insight into catalytic reactions in supercritical fluids: the identification of the phase behaviour of the reaction mixture, the behaviour of the fluid inside the porous catalyst, the processes occurring at the solid–fluid interface, the possible dissolution of active species and, similar as in gas–solid reactions, the establishment of structure–activity relationships.