Optical anisotropy in solvent-modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) and its effect on the photovoltaic performance of crystalline silicon/organic heterojunction solar cells

Abstract
An investigation was carried out into the effect of uniaxial optical anisotropy in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) on the photovoltaic performance of crystalline Si/PEDOT:PSS heterojunction solar cells fabricated by spin coating using either a methanol (MeOH) solvent alone or using MeOH and ethylene glycol (EG) as cosolvents. Spectroscopic ellipsometry revealed that the extraordinary index of refraction increased by the use of the cosolvents. In contrast, the ordinary index of refraction indicated metallic properties and was almost independent of the concentration of MeOH or EG. The highest conductivity was found for a (PEDOT:PSS):(MeOH):(EG) weight ratio of 1:1:0.1, and this sample exhibited a relatively high power conversion efficiency of 11.23%. These findings suggest that the increase in the extraordinary index of refraction leads to an enhancement of the hole mobility in PEDOT:PSS, resulting in improved photovoltaic performance.

This publication has 20 references indexed in Scilit: