Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence

Abstract
The Alphavirus genus of the family Togaviridae contains mosquito-vectored viruses that primarily cause either arthritogenic disease or acute encephalitis. North American eastern equine encephalitis virus (NA-EEEV) is uniquely neurovirulent among encephalitic alphaviruses, causing mortality in a majority of symptomatic cases and neurological sequelae in many survivors. Unlike many alphaviruses, NA-EEEV infection of mice yields limited signs of febrile illness typically associated with lymphoid tissue replication. Rather, signs of brain infection, including seizures, are prominent. Use of heparan sulfate (HS) as an attachment receptor increases the neurovirulence of cell culture-adapted strains of Sindbis virus, an arthritogenic alphavirus. However, this receptor is not known to be used by naturally circulating alphaviruses. We demonstrate that wild-type NA-EEEV strain FL91-4679 uses HS as an attachment receptor and that the amino acid sequence of its E2 attachment protein is identical to those of natural isolates sequenced by RT-PCR amplification of field samples. This finding unequivocally confirms the use of HS receptors by naturally circulating NA-EEEV strains. Inactivation of the major HS binding domain in NA-EEEV E2 demonstrated that the HS binding increased brain replication and neurologic disease but reduced lymphoid tissue replication, febrile illness signs, and cytokine/chemokine induction in mice. We propose that HS binding by natural NA-EEEV strains alters tropism in vivo to antagonize/evade immune responses, and the extreme neurovirulence of wild-type NA-EEEV may be a consequence. Therefore, reinvestigation of HS binding by this and other arboviruses is warranted.

This publication has 45 references indexed in Scilit: