EZH2 Promotes Malignant Behaviors via Cell Cycle Dysregulation and Its mRNA Level Associates with Prognosis of Patient with Non-Small Cell Lung Cancer

Abstract
Epigenetic silencing is a common mechanism to inactivate tumor suppressor genes during carcinogenesis. Enhancer of Zeste 2 (EZH2) is the histone methyltransferase subunit in polycomb repressive complex 2 which mediates transcriptional repression through histone methylation. EZH2 overexpression has been linked to aggressive phenotypes of certain cancers. However, the mechanism that EZH2 played in promoting malignancy in non-small cell lung cancer (NSCLC) remains unclear. In addition, the correlation of EZH2 overexpression and the prognosis of NSCLC patients in non-Asian cohort need to be determined. Up-regulation of EZH2 was found in NSCLC cells compared with normal human bronchial epithelial cells by western blot assay. Upon EZH2 knockdown using small interfering RNA (siRNA), the proliferation, anchorage-independent growth and invasion of NSCLC cells were remarkably suppressed with profound induction of G1 arrest. Furthermore, the expression of cyclin D1 was notably reduced whereas p15INK4B, p21Waf1/Cip1 and p27Kip1 were increased in NSCLC cells after EZH2-siRNA delivery. To determine whether EZH2 expression contributes to disease progression in patients with NSCLC, Taqman quantitative real-time RT-PCR was used to measure the expression of EZH2 in paired tumor and normal samples. Univariate analysis revealed that patients with NSCLC whose tumors had a higher EZH2 expression had significantly inferior overall, disease-specific, and disease-free survivals compared to those whose tumors expressed lower EZH2 (P = 0.005, P = 0.001 and P = 0.003, respectively). In multivariate analysis, EZH2 expression was an independent predictor of disease-free survival (hazard ratio = 0.450, 95% CI: 0.270 to 0.750, P = 0.002). Our results demonstrate that EZH2 overexpression is critical for NSCLC progression. EZH2 mRNA levels may serve as a prognostic predictor for patients with NSCLC.