Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria

Abstract
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development. Growth is a dynamic process that responds to a changing environment. Most of the methods that we have for measuring are static and collecting information throughout an organisms lifecycle is labor and cost prohibitive. Advances in imaging and robotics technology have enabled novel approaches to understanding how plants adapt to the environment. Using the model grass Setaria and new methods for measuring parameters from images, we investigate the genetic architecture of plant height in response to water availability and planting density. Height is one of the most influential components of plant architecture, determining tradeoffs between competition and resource allocation and is an important trait for boosting yields. The non-destructive nature of plant height measurements has enabled us to monitor growth throughout the plant life cycle in both field and controlled environments. We identified several loci controlling height in a population derived from a wild strain of Setaria viridis and its domesticated relative Setaria italica, as well as the developmental time in which these loci act. In this population, alleles inherited from the wild parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated parent collectively act to increase plant height later in development.
Funding Information
  • U.S. Department of Energy (DE-SC0008769)