Artificial Faraday rotation using a ring metamaterial structure without static magnetic field

Abstract
A metamaterial structure composed of a periodic array of conductive rings including each a semiconductor-based isolator is experimentally shown to produce Faraday rotation. Due to the presence of the isolators, a unidirectional traveling-wave regime is established along the rings, generating rotating magnetic moments and hence emulating the phenomenon of electron spin precession. The metamaterial exhibits the same response as a magnetically biased ferrite or plasma, but without the need of any static magnetic field bias, and therefore, it is easily integrated in printed circuit technology.

This publication has 2 references indexed in Scilit: