Physical Mechanism of Grain Refinement in Solidification of Undercooled Melts

Abstract
It is proposed that the widely observed transitions in solidification of undercooled melts from a coarse grained dendritic to a grain refined equiaxed microstructure result from the fragmentation of dendrites by remelting during the period following recalescence where the interdendritic melt solidifies. This mechanism is supported by the experimental demonstration in Cu-Ni alloys that the transition undercoolings vary with cooling rate in a way which is relatively well described quantitatively by a simple fragmentation model. The latter also predicts the occurrence to two transitions, both of which are observed.